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Self Introduction
● Assistant Professor,  NYU, ECE & CS, lead System & AI 

(SAI) lab.
● A senior research scientist at Meta, 2022-2024.
● Academic trajectory

○ University of Toronto
■ Bachelor and Master in ECE
■ Master in Statistics

○ Harvard University
■ PhD in CS

● Research Interest:
○ Efficient AI Algorithm 
○ AI Hardware Accelerator
○ AR/VR System
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Course Information
● Course website: https://www.saiqianzhang.com/COURSE/
● I use Brightspace to post announcements and grades
● I provide an online zoom meeting option for people interested 

in auditing the class. However, enrolled students are required 
to attend in person unless special condition.

● A suggested reading list which contains interesting papers can 
be found here.

● Discussion groups has been created in the Brightspace
● Course email: efficientaiaccelerator@gmail.com

https://www.saiqianzhang.com/COURSE/
https://nyu.zoom.us/j/98290357807?pwd=3AQiwdtdVatqVdRgAe3tURfvvtcUAX.1&jst=2
https://docs.google.com/spreadsheets/d/14C0DwQ5g_wLgQQe9PPRQOfT0sHmLNOq-df5Xewft_lI/edit?usp=sharing
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Course Feedback from Spring 2025
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Course Feedback from Spring 2025
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Course Information
● The course will involve 13 lectures, 3 coding assignments, 1 final project, 1 midterm exam and 

in-class quiz.
○ In-class quiz (10%) 
○ Assignments (30%): total three of them, each counts 10%
○ Midterm (30%) 
○ Final project (30%)

■ Project Proposal (5%) (1 page)
■ Final Presentation (15%)
■ Final Report (10%)

● Readings:
○ Course notes and papers (optional)
○ (reference) Goodfellow, Ian. "Deep learning." (2016). https://www.deeplearningbook.org/

● Lecture time:
○ Wednesday: 7:10pm-9:10pm

● Office hour:
○ Friday: 1:30pm-2:30pm, or by appointment (Zoom)

https://www.deeplearningbook.org/
https://nyu.zoom.us/j/96131409186?pwd=ryGlcOLMNa4pWIrR9ewWXPsP8Kauio.1&jst=2
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Course Assistant/Grader
Shawn Yin (CA) Xiwen Min (CA) Yunhai Hu (Grader)

Office hour: Monday 
1:00pm-2:00pm

(Zoom)

Office hour: Thursday 
10:00am-11:00am

(Zoom)

https://nyu.zoom.us/j/93792185505
https://nyu.zoom.us/j/94161466725
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Life is Powered by Deep Learning

● More desirable modern services are enabled by DNN

● Deep Neural Networks (DNNs) have achieved state-of-the-art performance 
across a variety of domains
○ Image Recognition
○ Video Processing
○ Natural Language Processing
○ Autonomous Driving

Convolutional 
Neural Network

(CNN)
‘rose’

Image Classification

Non
CNNs CNNs
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How Deep Neural Network is Executed? 

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

‘rose’
● Use a Convolutional Neural Network 

(CNN) as an example
● This CNN contains four layers 

○ 3 convolutional layers
○ 1 fully connected layer
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How Deep Neural Network is Executed? 

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution
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How Deep Neural Network is Executed? 

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

‘rose’
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DNN Execution: A Matrix View
Layer View

Fully Connected

Convolution

Convolution

Convolution

= ?

Matrix View

Weight 
Matrix

Data 
Matrix

● Weight matrices are 
learned during training
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DNN Execution: A Matrix View
Layer View

Fully Connected

Convolution

Convolution

Convolution

Matrix View

● Weight matrices are 
learned during training 

=
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DNN Execution: A Matrix View
Layer View

Fully Connected

Convolution

Convolution

Convolution

Matrix View

● Remaining layers follow 
this pattern.  

=

=

= ?
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DNN Execution: A Matrix View
Layer View

Fully Connected

Convolution

Convolution

Convolution

Matrix View

● Remaining layers follow 
this pattern  

=

=

=

=
‘rose’
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Deployment of DNN: Problems

VGG-16 is a CNN with 
over 150M weights 
across 16 matrices

● The majority of computation workloads 
for DNN inference involves a series of 
matrix multiplications.
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Deployment of DNN: Problems
● DNN suffers due to:

○ High energy consumption
○ High processing latency
○ High storage cost

● DNN needs to maintain high accuracy

20B multiply/adds 
per image

Bianco, Simone, et al. "Benchmark analysis of representative deep neural network architectures." IEEE Access 
6 (2018): 64270-64277.

The 
higher 

the 
better

The lower 
the better
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The Era of Large Models (LMs)
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Cost of Large Models
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● 1.4e12 FLOPs to execute GPT-2.
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Transformer
(0.05B)

GPT-1
(0.11B)

BERT
(0.34B)

GPT-2
(1.5B)

MegaTron-LM
(8.3B)

GPT-3
(175B)

T-NLG
(17B)

GPT-4
(>1T)



23

The Cost of Large Models

● Training GPT-4 required 25,000 A100 GPUs 
over several weeks.

● Cost: Renting a single high-end GPU on cloud 
services like AWS can cost $3–$5 per hour. 
Training GPT-4 is estimated to cost $63-100 
million on cloud computing resources.
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Efficient AI: An Emerging Area

Design more aggressive and efficient AI model is 
of paramount importance

LLaMA 3.1
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Efficient AI: An Emerging Area

Moore’s 
law

DNN 
workload 

The amount of compute supported within a 
hardware unit is growing slowly

DNN workload grows 
exponentially

How to reduce the compute while 
maintaining a good DNN accuracy?
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Efficient AI: An Emerging Area

● Efficient AI has become one of the 
most popular areas in AI 
community.

● The recent emergence of large 
models has further heightened 
the need for efficient AI.
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Efficient AI: An Emerging Area

Jobs at Meta Jobs at Google
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AI Tech Startups/Unicorns 
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Efficient AI: An Emerging Area

Challenges

Accurate

Hardware 
efficient Generic

Ideal
solution
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Efficient AI: Full-stack Workflow

Circuit-level Optimization

Graph optimization

Kernel-level optimization

Fu
ll-

st
ac

k 
W

or
kf

lo
w

Single Core, SoC

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator
Distributed system, Multicore

Quantization

Distillation & Low rank

Algorithmic Optimization

Pruning
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Efficient AI: Full-stack Workflow

Circuit-level Optimization

Graph optimization

Kernel-level optimization
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Algorithmic Optimization

Single Core, SoC

Efficient Algorithm
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Distributed system, Multicore
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Algorithmic Optimization

Convolution
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Standard Convolution
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Efficient DNN Algorithm: Pruning

DNN weights

0.1 3  1
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-8 1.40.6-1

Prune
1.2 0.2

0.2 0 3  1

0 -1

-8 1.40-1

1.2 0

0



34

Efficient DNN Algorithm: Quantization

Quantize
(-10, 10)DNN weights

8.5 3  1

3.9 -1

8.1 1.40.6-1
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4 -1
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Knowledge Distillation
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QSVD

● We propose leveraging Singular-Value Decomposition over the joint query (Q), key (K), 
and value (V) weight matrices to reduce KV cache size and computational overhead.
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Speculative Decoding with DREAM

● We introduce DREAM, a novel speculative decoding framework tailored for VLMs.
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Efficient AI: Full-stack Workflow

Circuit-level Optimization

Fu
ll-
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Distillation & Low rank

Single Core, SoC

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator

Algorithmic Optimization

Distributed system, Multicore

Graph optimization

Kernel-level optimization
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Graph Level Optimization
 CAMEL Training

Zhang, Sai Qian, et al. "Camel: Co-designing ai models and edrams for efficient on-device learning." 2024 IEEE International 
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.
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System Level Optimization

MemCompute 
Core

Round 1
Step 1

Step 3
Step 2

MemCompute 
Core

Round 2
Step 4

Step 6
Step 5

MemCompute 
Core

Step 1

Step 2
MemCompute 

Core
Step 3 Step 4

Round 1 Round 2
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System Level Optimization
● How to convert a number x to INT representation?

○ Set the clipping range: (-L, L), bitwidth: b
○ Compute the scale: 
○ Clip the input x:
○ Calculate the INT representation:
○ Rescale: 

INT
Conv

FP2
INT

INT2
FP

Batch
Norm

ReLU INT
Conv

FP2
INT …

Layer l FP2INT is not cheap! But we can 
explore some system-level solution
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Kernel Fusion
to

ke
n_

nu
m

embedding_dim

…

1. assign each token to a GPU block
GPU block

token [i, i+128]

Norm

2. assign a fraction of a
    token to each thread 

A thread in block

3. parallely calculate
    normalization/activation 
    and max abs of each part

4. tree-based parallel                       
    reduction for threads

+ Max 
Abs

● For example, we can fuse the max searching operation to the batch 
normalization operation within LLM.
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Efficient AI: Full-stack Workflow
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Distillation & Low rank

Algorithmic Optimization
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Hardware Support for DNN
● GPU is better than CPU in terms of throughput for both Neural Network 

training and inference. 
○ GPU leverages the highly parallelized architecture of its computing 

units to handle computational intensive operations. 
● However, GPU:

○ General purpose, although much more specific than CPU.
○ Still not fast and power-efficient enough.
○ Does not support advanced efficient DNN algorithm.
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NVIDIA
Chip size 814 mm2

On-chip memory ~50MB

Total memory ~96GB HBM

Cores 16,896 FP32 + 528 
Tensor

Precision FP16/FP8/INT8

Memory 
bandwidth

0.003 
Petabytes/secNVIDIA H100

https://www.techpowerup.com/gpu-specs/h100-sxm5-96-gb.c3974
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NVIDIA

Chip size -

On-chip memory -

Total memory 192GB HBM

Cores -

Precision FP16/FP8/FP4/INT8

Memory bandwidth 8 Terabytes/sec
NVIDIA Blackwell

https://wccftech.com/nvidia-blackwell-gpu-architecture-official-208-billion-transistors-5
x-ai-performance-192-gb-hbm3e-memory/
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Hardware Support for DNN

Tensor Processing Unit (Google) Alveo Accelerator Card (Xilinx)

● ASIC-based implementations have been recently explored to accelerate the DNN inference.
○ Google’s TPU, Apple’s Neural Engine, Cerebras AI chip, …

● FPGA-based accelerators for DNN inference have been recently developed.
○ Has good programmability and flexibility
○ Short development cycles
○ Can be used as a benchmark before implementing on ASIC

Cerebras CS-3
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Systolic Array 
● Kung and Leiserson, "Systolic Arrays for VLSI," 1978 and Kung, "Why systolic architectures?' 1982
● 2D grid of multiplier-accumulators (MACs) for matrix multiplication
● Used by Google TPU for deep learning (2017), etc

2D Systolic Array

x

v

z = w·x + y
v = x

z

Systolic cell

y

TPU (Google)
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Bit-serial Low-precision Multiplier
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Why We Need Codesign?

Circuit-level Optimization

Graph optimization

Kernel-level optimization

Jo
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Single Core, SoC

Distributed system, Multicore

Quantization

Distillation & Low rank

Algorithmic Optimization

Pruning
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Why We Need Codesign?

Input
Dense
Weight Input

Sparse
Weight

0
Input

0

Unstructured

Sparse
Weight

Structured

High accuracy
low hardware efficiency

Low accuracy
high hardware efficiency

Hardware architecture needs to be considered when designing efficient DNN.
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Column Combining
 Sparse

Weight Matrix

Column Combining
8x reduction in size

 Packed Format in 
Systolic Array

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array 
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on 
Architectural Support for Programming Languages and Operating Systems. 2019.
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Column Combining

x1 x2 x3 x4
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● Column combining can greatly increase the utilization efficiency of the systolic array
● Recently, Nvidia A100 GPU adopts a similar idea to support the balanced structured sparsity on their GPU

Yin

x3 x4

Yout

x3 x4

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array 
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on 
Architectural Support for Programming Languages and Operating Systems. 2019.
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FPGA Accelerator

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array 
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on 
Architectural Support for Programming Languages and Operating Systems. 2019.
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Term Quantization

24 21 2023 22

0 1
1 0 0
1 0 1
0 0 1

0 0
0
0
0

0
1
0
1

W1 = 
1

W2 = 12
W3 = 

5
W4 = 137

8-bit uniform quantization
252627

0
0
0
0

0
0
0
0

0
0
0
1

0 1
1 0 0
1 0 1
0 0 1

0 0
0
0
0

0
1
0
1

0
0
0
0

0
0
0
0

0
0
0
1

4-bit 
W’1 = 0
W’2 = 0
W’3 = 0
W’4 = 128

4-bit uniform quantization
24 21 2023 22252627

● Low-precision quantization leads to significant quantization error.
● Both weights and input activation are highly biased in values.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized 
dnns." arXiv preprint arXiv:2007.06389 (2020).
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Term Quantization
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● We can control the term-level computations by setting a group term budget.
● For a group of values, we rank and remove the small terms based on this budget.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized 
dnns." arXiv preprint arXiv:2007.06389 (2020).
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Term Quantization: Accelerator Design

Weight exponent queue +
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● We propose the term MAC (tMAC) for the efficient implementation of TQ.
● A tMAC processes all term-pair multiplications across a group of weight and data values.
● Each term is represented by their corresponding exponent (2-3 bits).
● The term accumulation can be implemented using half adders.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized 
dnns." arXiv preprint arXiv:2007.06389 (2020).
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Kelle: Co-design KV Caching and eDRAM for 
Efficient LLM Serving in Edge Computing

● We propose using embedded DRAM (eDRAM) as the primary storage for LLM serving in edge device, 
which offers higher storage density compared to SRAM. 

● To reduce eDRAM costs and improve overall system performance, we propose Kelle, a 
software-hardware co-design solution optimized for deploying LLMs on eDRAMbased edge systems.
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Kelle: Co-design KV Caching and eDRAM for 
Efficient LLM Serving in Edge Computing

● Combined with our fine-grained 
memory eviction, recomputation, and 
refresh control algorithms, the Kelle 
accelerator delivers a 3.9× speedup 
and 4.5× energy savings compared to 
existing baseline solutions.
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Lecture Plan (Tentative)
Chapter 1: Basics and Efficient DNN Architectures
● Lecture 1: Review the basics of DNN
● Lecture 2: CNNs, RNNs and Variants
● Lecture 3: Transformer and its Application in AIGC
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Lecture Plan (Tentative)
Chapter 2: Efficient DNN Algorithms
● Lecture 4: DNN Pruning 
● Lecture 5: DNN Quantization
● Lecture 6: Distillation, Low rank Decomposition and NAS
● Lecture 7: Algorithm for Large Model Efficiency 
● Lecture 8: Efficient DNN Training, Distributed Training, Federated Learning
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Lecture Plan (Tentative)
Chapter 3: System and Hardware Design for AI
● Lecture 9: Distributed Machine Learning System for Training and Inference
● Lecture 10: Machine Learning System for Large Model
● Lecture 11: AI Accelerator Introduction and CNN Accelerators
● Lecture 12: Transformer & LLM Accelerators
● Lecture 13: The Future of Efficient AI

○ Guest Lecture: Vithursan Thangarasa (Cerebras)


