
Lecture 0:
Introduction and Course

Overview

CSCI-GA 3033
Special Topics: Efficient AI Computing: Algorithm and Implementation

2

Self Introduction
● Assistant Professor, NYU, ECE & CS, lead System & AI

(SAI) lab.
● A senior research scientist at Meta, 2022-2024.
● Academic trajectory

○ University of Toronto
■ Bachelor and Master in ECE
■ Master in Statistics

○ Harvard University
■ PhD in CS

● Research Interest:
○ Efficient AI Algorithm
○ AI Hardware Accelerator
○ AR/VR System

3

Course Information
● Course website: https://www.saiqianzhang.com/COURSE/
● I use Brightspace to post announcements and grades
● I provide an online zoom meeting option for people interested

in auditing the class. However, enrolled students are required
to attend in person unless special condition.

● A suggested reading list which contains interesting papers can
be found here.

● Discussion groups has been created in the Brightspace
● Course email: efficientaiaccelerator@gmail.com

https://www.saiqianzhang.com/COURSE/
https://nyu.zoom.us/j/98290357807?pwd=3AQiwdtdVatqVdRgAe3tURfvvtcUAX.1&jst=2
https://docs.google.com/spreadsheets/d/14C0DwQ5g_wLgQQe9PPRQOfT0sHmLNOq-df5Xewft_lI/edit?usp=sharing

4

Course Feedback from Spring 2025

5

Course Feedback from Spring 2025

6

Course Information
● The course will involve 13 lectures, 3 coding assignments, 1 final project, 1 midterm exam and

in-class quiz.
○ In-class quiz (10%)
○ Assignments (30%): total three of them, each counts 10%
○ Midterm (30%)
○ Final project (30%)

■ Project Proposal (5%) (1 page)
■ Final Presentation (15%)
■ Final Report (10%)

● Readings:
○ Course notes and papers (optional)
○ (reference) Goodfellow, Ian. "Deep learning." (2016). https://www.deeplearningbook.org/

● Lecture time:
○ Wednesday: 7:10pm-9:10pm

● Office hour:
○ Friday: 1:30pm-2:30pm, or by appointment (Zoom)

https://www.deeplearningbook.org/
https://nyu.zoom.us/j/96131409186?pwd=ryGlcOLMNa4pWIrR9ewWXPsP8Kauio.1&jst=2

7

Course Assistant/Grader
Shawn Yin (CA) Xiwen Min (CA) Yunhai Hu (Grader)

Office hour: Monday
1:00pm-2:00pm

(Zoom)

Office hour: Thursday
10:00am-11:00am

(Zoom)

https://nyu.zoom.us/j/93792185505
https://nyu.zoom.us/j/94161466725

8

Life is Powered by Deep Learning

● More desirable modern services are enabled by DNN

● Deep Neural Networks (DNNs) have achieved state-of-the-art performance
across a variety of domains
○ Image Recognition
○ Video Processing
○ Natural Language Processing
○ Autonomous Driving

Convolutional
Neural Network

(CNN)
‘rose’

Image Classification

Non
CNNs CNNs

9

How Deep Neural Network is Executed?

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

‘rose’
● Use a Convolutional Neural Network

(CNN) as an example
● This CNN contains four layers

○ 3 convolutional layers
○ 1 fully connected layer

10

How Deep Neural Network is Executed?

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

11

How Deep Neural Network is Executed?

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

12

How Deep Neural Network is Executed?

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

13

How Deep Neural Network is Executed?

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

14

How Deep Neural Network is Executed?

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

‘rose’

15

DNN Execution: A Matrix View
Layer View

Fully Connected

Convolution

Convolution

Convolution

= ?

Matrix View

Weight
Matrix

Data
Matrix

● Weight matrices are
learned during training

16

DNN Execution: A Matrix View
Layer View

Fully Connected

Convolution

Convolution

Convolution

Matrix View

● Weight matrices are
learned during training

=

17

DNN Execution: A Matrix View
Layer View

Fully Connected

Convolution

Convolution

Convolution

Matrix View

● Remaining layers follow
this pattern.

=

=

= ?

18

DNN Execution: A Matrix View
Layer View

Fully Connected

Convolution

Convolution

Convolution

Matrix View

● Remaining layers follow
this pattern

=

=

=

=
‘rose’

19

Deployment of DNN: Problems

VGG-16 is a CNN with
over 150M weights
across 16 matrices

● The majority of computation workloads
for DNN inference involves a series of
matrix multiplications.

20

Deployment of DNN: Problems
● DNN suffers due to:

○ High energy consumption
○ High processing latency
○ High storage cost

● DNN needs to maintain high accuracy

20B multiply/adds
per image

Bianco, Simone, et al. "Benchmark analysis of representative deep neural network architectures." IEEE Access
6 (2018): 64270-64277.

The
higher

the
better

The lower
the better

21

The Era of Large Models (LMs)

22

Cost of Large Models

2017

36

72

108

144

180

M
od

el
 s

iz
e

(b
ill

io
ns

)

● 1.4e12 FLOPs to execute GPT-2.

2018 2020 20212019

Transformer
(0.05B)

GPT-1
(0.11B)

BERT
(0.34B)

GPT-2
(1.5B)

MegaTron-LM
(8.3B)

GPT-3
(175B)

T-NLG
(17B)

GPT-4
(>1T)

23

The Cost of Large Models

● Training GPT-4 required 25,000 A100 GPUs
over several weeks.

● Cost: Renting a single high-end GPU on cloud
services like AWS can cost $3–$5 per hour.
Training GPT-4 is estimated to cost $63-100
million on cloud computing resources.

24

Efficient AI: An Emerging Area

Design more aggressive and efficient AI model is
of paramount importance

LLaMA 3.1

25

Efficient AI: An Emerging Area

Moore’s
law

DNN
workload

The amount of compute supported within a
hardware unit is growing slowly

DNN workload grows
exponentially

How to reduce the compute while
maintaining a good DNN accuracy?

26

Efficient AI: An Emerging Area

● Efficient AI has become one of the
most popular areas in AI
community.

● The recent emergence of large
models has further heightened
the need for efficient AI.

27

Efficient AI: An Emerging Area

Jobs at Meta Jobs at Google

28

AI Tech Startups/Unicorns

29

Efficient AI: An Emerging Area

Challenges

Accurate

Hardware
efficient Generic

Ideal
solution

30

Efficient AI: Full-stack Workflow

Circuit-level Optimization

Graph optimization

Kernel-level optimization

Fu
ll-

st
ac

k
W

or
kf

lo
w

Single Core, SoC

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator
Distributed system, Multicore

Quantization

Distillation & Low rank

Algorithmic Optimization

Pruning

31

Efficient AI: Full-stack Workflow

Circuit-level Optimization

Graph optimization

Kernel-level optimization

Fu
ll-

st
ac

k
W

or
kf

lo
w

Quantization

Distillation & Low rank

Algorithmic Optimization

Single Core, SoC

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator

Pruning

Distributed system, Multicore

32

Algorithmic Optimization

Convolution

=H

W

C

Depthwise
Conv

=

3
3

3
3H

W

C

Pointwise
Conv

=
1

1

Standard Convolution

Depthwise Separable Convolution

33

Efficient DNN Algorithm: Pruning

DNN weights

0.1 3 1

0.2 -1

-8 1.40.6-1

Prune
1.2 0.2

0.2 0 3 1

0 -1

-8 1.40-1

1.2 0

0

34

Efficient DNN Algorithm: Quantization

Quantize
(-10, 10)DNN weights

8.5 3 1

3.9 -1

8.1 1.40.6-1

1.2 4.6

0.2 9 3 1

4 -1

8 11-1

1 5

0

35

Knowledge Distillation

36

QSVD

● We propose leveraging Singular-Value Decomposition over the joint query (Q), key (K),
and value (V) weight matrices to reduce KV cache size and computational overhead.

37

Speculative Decoding with DREAM

● We introduce DREAM, a novel speculative decoding framework tailored for VLMs.

38

Efficient AI: Full-stack Workflow

Circuit-level Optimization

Fu
ll-

st
ac

k
W

or
kf

lo
w Pruning

Quantization

Distillation & Low rank

Single Core, SoC

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator

Algorithmic Optimization

Distributed system, Multicore

Graph optimization

Kernel-level optimization

39

Graph Level Optimization
 CAMEL Training

Zhang, Sai Qian, et al. "Camel: Co-designing ai models and edrams for efficient on-device learning." 2024 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

40

System Level Optimization

MemCompute
Core

Round 1
Step 1

Step 3
Step 2

MemCompute
Core

Round 2
Step 4

Step 6
Step 5

MemCompute
Core

Step 1

Step 2
MemCompute

Core
Step 3 Step 4

Round 1 Round 2

41

System Level Optimization
● How to convert a number x to INT representation?

○ Set the clipping range: (-L, L), bitwidth: b
○ Compute the scale:
○ Clip the input x:
○ Calculate the INT representation:
○ Rescale:

INT
Conv

FP2
INT

INT2
FP

Batch
Norm

ReLU INT
Conv

FP2
INT …

Layer l FP2INT is not cheap! But we can
explore some system-level solution

42

Kernel Fusion
to

ke
n_

nu
m

embedding_dim

…

1. assign each token to a GPU block
GPU block

token [i, i+128]

Norm

2. assign a fraction of a
 token to each thread

A thread in block

3. parallely calculate
 normalization/activation
 and max abs of each part

4. tree-based parallel
 reduction for threads

+ Max
Abs

● For example, we can fuse the max searching operation to the batch
normalization operation within LLM.

43

Efficient AI: Full-stack Workflow

Fu
ll-

st
ac

k
W

or
kf

lo
w Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator
Circuit-level Optimization

Single Core, SoC

Distributed system, Multicore

Graph optimization

Kernel-level optimization

Pruning

Quantization

Distillation & Low rank

Algorithmic Optimization

44

Hardware Support for DNN
● GPU is better than CPU in terms of throughput for both Neural Network

training and inference.
○ GPU leverages the highly parallelized architecture of its computing

units to handle computational intensive operations.
● However, GPU:

○ General purpose, although much more specific than CPU.
○ Still not fast and power-efficient enough.
○ Does not support advanced efficient DNN algorithm.

45

NVIDIA
Chip size 814 mm2

On-chip memory ~50MB

Total memory ~96GB HBM

Cores 16,896 FP32 + 528
Tensor

Precision FP16/FP8/INT8

Memory
bandwidth

0.003
Petabytes/secNVIDIA H100

https://www.techpowerup.com/gpu-specs/h100-sxm5-96-gb.c3974

46

NVIDIA

Chip size -

On-chip memory -

Total memory 192GB HBM

Cores -

Precision FP16/FP8/FP4/INT8

Memory bandwidth 8 Terabytes/sec
NVIDIA Blackwell

https://wccftech.com/nvidia-blackwell-gpu-architecture-official-208-billion-transistors-5
x-ai-performance-192-gb-hbm3e-memory/

47

Hardware Support for DNN

Tensor Processing Unit (Google) Alveo Accelerator Card (Xilinx)

● ASIC-based implementations have been recently explored to accelerate the DNN inference.
○ Google’s TPU, Apple’s Neural Engine, Cerebras AI chip, …

● FPGA-based accelerators for DNN inference have been recently developed.
○ Has good programmability and flexibility
○ Short development cycles
○ Can be used as a benchmark before implementing on ASIC

Cerebras CS-3

48

Systolic Array
● Kung and Leiserson, "Systolic Arrays for VLSI," 1978 and Kung, "Why systolic architectures?' 1982
● 2D grid of multiplier-accumulators (MACs) for matrix multiplication
● Used by Google TPU for deep learning (2017), etc

2D Systolic Array

x

v

z = w·x + y
v = x

z

Systolic cell

y

TPU (Google)

49

Bit-serial Low-precision Multiplier

50

Why We Need Codesign?

Circuit-level Optimization

Graph optimization

Kernel-level optimization

Jo
in

t O
pt

im
iz

at
io

n
Single Core, SoC

Distributed system, Multicore

Quantization

Distillation & Low rank

Algorithmic Optimization

Pruning

51

Why We Need Codesign?

Input
Dense
Weight Input

Sparse
Weight

0
Input

0

Unstructured

Sparse
Weight

Structured

High accuracy
low hardware efficiency

Low accuracy
high hardware efficiency

Hardware architecture needs to be considered when designing efficient DNN.

52

Column Combining
 Sparse

Weight Matrix

Column Combining
8x reduction in size

 Packed Format in
Systolic Array

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. 2019.

53

Column Combining

x1 x2 x3 x4

-3

-2

1

4

-1

-4

3

-6

x1 x2 x3 x4

(b) Systolic Array After
Column Combing

(a) Standard
Systolic Array

Column
Combining -6

-3

0

4

0

-2

1

0

0

0

-64

-1

-4

03

 1

-6 kept due to
larger magnitude

● Column combining can greatly increase the utilization efficiency of the systolic array
● Recently, Nvidia A100 GPU adopts a similar idea to support the balanced structured sparsity on their GPU

Yin

x3 x4

Yout

x3 x4

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. 2019.

54

FPGA Accelerator

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. 2019.

55

Term Quantization

24 21 2023 22

0 1
1 0 0
1 0 1
0 0 1

0 0
0
0
0

0
1
0
1

W1 =
1

W2 = 12
W3 =

5
W4 = 137

8-bit uniform quantization
252627

0
0
0
0

0
0
0
0

0
0
0
1

0 1
1 0 0
1 0 1
0 0 1

0 0
0
0
0

0
1
0
1

0
0
0
0

0
0
0
0

0
0
0
1

4-bit
W’1 = 0
W’2 = 0
W’3 = 0
W’4 = 128

4-bit uniform quantization
24 21 2023 22252627

● Low-precision quantization leads to significant quantization error.
● Both weights and input activation are highly biased in values.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized
dnns." arXiv preprint arXiv:2007.06389 (2020).

56

Term Quantization
21 2022

1 0
1 0 1
0

W
2
5

W’
2
4

21 2022

0 1
1 1

X
9
3

X’
8
2

23

0
0

0
0

0
1
23

[21,22]

[23,21]

21x23+22x2
1

dot productBudget = 2

4-bit uniform quantization
24 21202322

0 1
1 0 0
1 0 1
0 0 1

0 0
0
0
0

0
1
0
1

252627
0
0
0
0

0
0
0
0

0
0
0
1

24 21202322

1
1
0

0 0
0
0
0

0
1
0
1

252627
0
0
0
0

0
0
0
0

0
0
0
1

0 1
0 0
0 1
0 1

TQ with a budget = 4

W’1 = 0
W’2 = 0
W’3 = 0
W’4 = 128

W’1 = 0
W’2 = 12
W’3 = 0
W’4 = 136

● We can control the term-level computations by setting a group term budget.
● For a group of values, we rank and remove the small terms based on this budget.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized
dnns." arXiv preprint arXiv:2007.06389 (2020).

57

Term Quantization: Accelerator Design

Weight exponent queue +

Data exponent queues

4 43 22 11 0
+++++ + + +Sign

+3
0 tMAC

YoutTerm
accumulator

Yin

+
+2

1 +
+4

0 +
+1

0 +

 0 2 3 0
Weight index queue

 1 1 3 0

Systolic Array of tMAC

tMAC tMAC

tMAC tMAC

tMAC tMAC

tMAC

tMAC

tMAC

...

...

...

...

...

● We propose the term MAC (tMAC) for the efficient implementation of TQ.
● A tMAC processes all term-pair multiplications across a group of weight and data values.
● Each term is represented by their corresponding exponent (2-3 bits).
● The term accumulation can be implemented using half adders.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized
dnns." arXiv preprint arXiv:2007.06389 (2020).

58

Kelle: Co-design KV Caching and eDRAM for
Efficient LLM Serving in Edge Computing

● We propose using embedded DRAM (eDRAM) as the primary storage for LLM serving in edge device,
which offers higher storage density compared to SRAM.

● To reduce eDRAM costs and improve overall system performance, we propose Kelle, a
software-hardware co-design solution optimized for deploying LLMs on eDRAMbased edge systems.

59

Kelle: Co-design KV Caching and eDRAM for
Efficient LLM Serving in Edge Computing

● Combined with our fine-grained
memory eviction, recomputation, and
refresh control algorithms, the Kelle
accelerator delivers a 3.9× speedup
and 4.5× energy savings compared to
existing baseline solutions.

60

Lecture Plan (Tentative)
Chapter 1: Basics and Efficient DNN Architectures
● Lecture 1: Review the basics of DNN
● Lecture 2: CNNs, RNNs and Variants
● Lecture 3: Transformer and its Application in AIGC

61

Lecture Plan (Tentative)
Chapter 2: Efficient DNN Algorithms
● Lecture 4: DNN Pruning
● Lecture 5: DNN Quantization
● Lecture 6: Distillation, Low rank Decomposition and NAS
● Lecture 7: Algorithm for Large Model Efficiency
● Lecture 8: Efficient DNN Training, Distributed Training, Federated Learning

62

Lecture Plan (Tentative)
Chapter 3: System and Hardware Design for AI
● Lecture 9: Distributed Machine Learning System for Training and Inference
● Lecture 10: Machine Learning System for Large Model
● Lecture 11: AI Accelerator Introduction and CNN Accelerators
● Lecture 12: Transformer & LLM Accelerators
● Lecture 13: The Future of Efficient AI

○ Guest Lecture: Vithursan Thangarasa (Cerebras)

