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Self Introduction

e Assistant Professor, NYU, ECE & CS, lead System & Al
(SAI) lab.
A senior research scientist at Meta, 2022-2024.
Academic trajectory
o University of Toronto
m Bachelor and Master in ECE
m Master in Statistics
o Harvard University
m PhDIinCS
e Research Interest:
o Efficient Al Algorithm
o Al Hardware Accelerator
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Course Information

Course website: https://www.saigianzhang.com/COURSE/
| use Brightspace to post announcements and grades
| provide an online zoom meeting option for people interested

In auditing the class. However, enrolled students are required
to attend in person unless special condition.

A suggested reading list which contains interesting papers can
be found here.

Discussion groups has been created in the Brightspace
Course email: efficientaiaccelerator@gmail.com
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https://www.saiqianzhang.com/COURSE/
https://nyu.zoom.us/j/98290357807?pwd=3AQiwdtdVatqVdRgAe3tURfvvtcUAX.1&jst=2
https://docs.google.com/spreadsheets/d/14C0DwQ5g_wLgQQe9PPRQOfT0sHmLNOq-df5Xewft_lI/edit?usp=sharing

Course Feedback from Spring 2025

What is your overall satisfaction with the course?

Very Satisfied 14 87.50% (GG
Somewhat Satisfied 2 1250% D

Neutral 0 0.00%

Somewhat Dissatisfied 0 0.00%

Very Dissatisfied 0 0.00%

Total 16 0% 50% 100%

NYU SAI LAB




Course Feedback from Spring 2025

Comments

The course is a great addition to the course offerings at the school. The curriculum of the course is modern, cutting edge and very
advanced. In addition, given that this is an advanced class and the nature of the growth of the field with respect to publications and
cutting edge projects, the students should be given more time to work on hard and interesting problems as their projects, better
personalised resources should be provided to the students such HPC usage, hardware materials and tools.

| Having short quizzes each week covering last week’s content would greatly help prepare students for the midterm. |

This course covers intensive amount of topics in recent LLM design. This course is roughly 25 % foundational material and 75 %
the latest academic research. It will expose you to the cutting—edge developments in artificial intelligence and is especially valuable
for anyone who wants to dive deep into the newest advances in large language models

Well-designed and well taught course. It would be better if a discussion board was created on a site such as edstem or slack to
ensure that students can ask course-related questions and discuss, which is visible to other students.

One of the best classes I've ever had.

The course content is really good and helped me learn a lot about state—of-the-art efficient ai techniques. The professor is also

very helpful and very eager for his students' success. Two points of feedback; 1) an extra credit assignment which is more difficult
than the normal ones would be helpful for those interested.|2) the in—class presentation takes up a lot of the time, and could be |
replaced by an in—class quiz about those research papers|

There are extensive literatures covered each lecture, most of which are briefly mentioned. It might be better (just personal opinion)
to focus on 2-3 most influential papers each lecture and dive deep, leaving the related papers as selective reading materials. Also
it might be helpful to post the paper list on the course website ahead of time.

Course was well structured and contained material based on the latest developments in the field
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Course Information

e The course will involve 13 lectures, 3 coding assignments, 1 final project, 1 midterm exam and
in-class quiz.
o In-class quiz (10%)
o Assignments (30%): total three of them, each counts 10%
o Midterm (30%)
o Final project (30%)
m  Project Proposal (5%) (1 page)
m  Final Presentation (15%)
m  Final Report (10%)
e Readings:
o Course notes and papers (optional)
o (reference) Goodfellow, lan. "Deep learning." (2016). https://www.deeplearningbook.org/
e |ecture time:
o Wednesday: 7:10pm-9:10pm
e Office hour:
o Friday: 1:30pm-2:30pm, or by appointment (Zoom)
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https://www.deeplearningbook.org/
https://nyu.zoom.us/j/96131409186?pwd=ryGlcOLMNa4pWIrR9ewWXPsP8Kauio.1&jst=2

Course Assistant/Grader

Shawn Yin (CA) Xiwen Min (CA)

|
Office hour: Monday Office hour: Thurday
1:00pm-2:00pm 10:00am-11:00am
(Zoom) (Zoom)
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https://nyu.zoom.us/j/93792185505
https://nyu.zoom.us/j/94161466725

Life is Powered by Deep Learning

e Deep Neural Networks (DNNs) have achieved state-of-the-art performance
across a variety of domains
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How Deep Neural Network is Executed?

e Use a Convolutional Neural Network
(CNN) as an example

e This CNN contains four layers
o 3 convolutional layers
o 1 fully connected layer

NYU SAI LAB
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How Deep Neural Network is Executed?
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DNN Execution: A Matrix View
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DNN Execution: A Matrix View
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DNN Execution: A Matrix View

Layer View Matrix View
*

Fully Connected
A

e Remaining layers follow
this pattern.
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DNN Execution: A Matrix View

Layer View Matrix View
4 ‘rose’
Fully Connected |--------"""- > X = [
4 ».__-_ e Remaining layers follow
: : this pattern
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'}
Convolution X =
A
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Deployment of DNN: Problems

e The majority of computation workloads
for DNN inference involves a series of
matrix multiplications.

‘rose’
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o

VGG-16 is a CNN with
over 150M weights
across 16 matrices



Deployment of DNN: Problems

DNN suffers due to:

o High energy consumption

o High processing latency

o High storage cost

DNN needs to maintain high accuracy

NYU SAI LAB
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The Era of Large Models (LMs)

NYU SAI LAB
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Cost of Large Models
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The Cost of Large Models

NYU SAI LAB

Training GPT-4 required 25,000 A100 GPUs
over several weeks.

Cost: Renting a single high-end GPU on cloud
services like AWS can cost $3—-$5 per hour.
Training GPT-4 is estimated to cost $63-100
million on cloud computing resources.
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Efficient Al: An Emerging Area

ARCHITECTURE
Model Size FP16 FPS INT4 o i
................. T e
3
8B 16 GB 8 GB 4GB e
SeGLy
70B 140 GB 70 GB 35GB ——
e ; & ' Nx
4058 LLaMA 3.1 810 GB 405 GB | 203GB | ; P :

with KV Cache

Postionsl Ereodegs

Design more aggressive and efficient Al model is
of paramount importance
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Efficient Al: An Emerging Area

hardware unit is growing slowly

DNN
workload DNN workload grows
exponentially

How to reduce the compute while

The amount of compute supported within a /

NYU SAI LAB maintaining a good DNN accuracy?
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Efficient Al: An Emerging Area

Research Publications on DNN Pruning and Quantization (2015-2023)
850

—e— Publications
---- Trendline
800

o
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20&9
Year

2020

2021

2022

2023

Efficient Al has become one of the
most popular areas in Al
community.

The recent emergence of large
models has further heightened
the need for efficient Al.
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Al Tech Startups/Unicorns
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Efficient Al: An Emerging Area
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Challenges

olution
Hardware
efficient '




Efficient Al: Full-stack Workflow

NYU SAI LAB

Full-stack Workflow

S

‘VV

Algorithmic Optimization

Distillation & Low rank

[ Graph optimization ]

[ Kernel-level optimization ]

[ Distributed system, Multicore ]
[ Single Core, SoC ]

[ Circuit-level Optimization ]

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator
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Efficient Al: Full-stack Workflow

AAL

Algorithmic Optimization

Efficient Algorithm

Distillation & Low rank

DNN Compiler

Full-stack Workflow

DNN Hardware Accelerator
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Algorithmic Optimization

DepthW|se Separable Convolutlon
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1 W | :
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Efficient DNN Algorithm: Pruning

% 0.1 3 160.2] 1 (¢] 3160 1
0.2]1.2]|0.2( -1 0 (1.2 0 |-1
) Prune
DNN weights —

% -8 |-1l0.6|1.4 -8|-1]|0 (1.4

NYU SAI LAB




Efficient DNN Algorithm: Quantization
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Knowledge Distillation

NYU SAI LAB

Teacher Model
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QSVD

Calibration
dataset

Step 1:
Joint SVD over QKV Weight

QSVD

Step 3:
Post-training Quantization
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Language model

— Loss -/ P Token Concatenation

e We propose leveraging Singular-Value Decomposition over the joint query (Q), key (K),

and value (V) weight matrices to reduce KV cache size and computational overhead.
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Speculative Decoding with DREAM
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NYU SAI LAB e We introduce DREAM, a novel speculative decoding framework tailored for VLMs.
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Efficient Al: Full-stack Workflow

AAL

NYU SAI LAB

Full-stack Workflow

[ Graph optimization ]

[ Kernel-level optimization ]

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator
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Graph Level Optimization

CAMEL Training

y

Concatenate| |
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X1 X2

Output

Reversible
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Zhang, Sai Qian, et al. "Camel: Co-designing ai models and edrams for efficient on-device learning." 2024 IEEE International
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(c) Pseudo instruction

Compute Y31 = G(X2))

Overwrite X2, with Y31

Compute Y2 = Pool(y3,) + F1(X1,1)
Save y2|

Compute Y1, = X1,1+F2(y2,)
Overwrite X1,1 with Y1,

(d) Computation pattern of forward pass

Layer| Layer 1+1
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i Compute iCompute EComputeE Compute ECompute ':Computei
I Y3l 1 1 1 Y3,+1 1 y2,+1 D AL
1o t fs iy £y ts tg

Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.
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System Level Optimization

Round 1 Round 2
Step 1 Step 4
-~ ~
Y Compute Y Compute
‘4’ Core Step 3 L ‘4’ Core Step 6 Mem
Step 2 Step 5
'\\_M____Cf'_(i,(__T___,]/: 2 Round 1 Round 2
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i) ) £ ~
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: ! Step 2 Selic St: 3 Core Step 4
Layernorm P P _—
X
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System Level Optimization

e How to convert a number x to INT representation?

Set the clipping range: (-L, L), bitwidth: b

Compute the scale: s = 2L /(2" — 2)

Clip the input x: z. = Clip(x, L, —L)

Calculate the INT representation: ;,; = round(x./s)
Rescale: Ty = STt

O O O O O

_|FP2l | INT | INT2] | Batch | log | |FP2] | INT |

INT Conv FP Norm INT Conv

\ )
Y

Laver | FP2INT is not cheap! But we can
NYU SA[ LAB y explore some system-level solution
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Kernel Fusion

embedding_dim /| token f----- m 3. parallely calculate
c I normalization/activation
= > L o and max abs of each part
R > | et
Q - Norm 1+ Abs | 4. tree-based parallel
Ie] > A A\\\t\ﬁrea r in--bTo_cI: ~  reduction for threads

GPU block

1. assign each token to a GPU block 2. assign a fraction of a

token to each thread

e For example, we can fuse the max searching operation to the batch
normalization operation within LLM.
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Efficient Al: Full-stack Workflow

AAB

% Efficient Algorithm

o

4

—

=

X .

) DNN Compiler

8

P

% [ Distributed system, Multicore ]

- | Single Core, SoC ] DNN Hardware Accelerator
[ Circuit-level Optimization ]

‘VV
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Hardware Support for DNN

e GPU is better than CPU in terms of throughput for both Neural Network
training and inference.
o GPU leverages the highly parallelized architecture of its computing
units to handle computational intensive operations.

FP64

e However, GPU: -
o General purpose, although much more specific than CPU.
o  Still not fast and power-efficient enough.

o Does not support advanced efficient DNN algorithm.

NYU SAI LAB

FP64

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT INT
INT INT

e Y TENSOR TENSOR

INT INT CORE CORE

INT INT
INT INT

INT INT

LY LD/ W/ LY LDF LD LDF LDV
ST ST ST ST ST ST ST ST SFU



NVIDIA

NYU SAI LAB

Chip size 814 mm?
On-chip memory ~50MB
Total memory ~96GB HBM
Cores 16,896 FP32 + 528
Tensor
Precision FP16/FP8/INTS
NVIDIA H100 bg/l ndwidth peta%St%i/sec

https://www.techpowerup.com/gpu-specs/h100-sxm5-96-gb.c3974
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NVIDIA

Chip size -

On-chip memory -

Total memory 192GB HBM
Cores -
Precision FP16/FP8/FP4/INT8
Memory bandwidth 8 Terabytes/sec

NVIDIA Blackwell

https://wccftech.com/nvidia-blackwell-gpu-architecture-official-208-billion-transistors-5

NYU SAI LAB x-ai-performance-192-gb-hbm3e-memory/



Hardware Support for DNN

e ASIC-based implementations have been recently explored to accelerate the DNN inference.
o  Google’s TPU, Apple’s Neural Engine, Cerebras Al chip, ...

e FPGA-based accelerators for DNN inference have been recently developed.

o Has good programmability and flexibility
o  Short development cycles
o  Can be used as a benchmark before implementing on ASIC

Tensor Processing Unit (Google) Alveo Accelerator Card (Xilinx) Cerebras CS-3

NYU SAI LAB ,




Systolic Array

e Kung and Leiserson, "Systolic Arrays for VLSI," 1978 and Kung, "Why systolic architectures?' 1982

e 2D grid of multiplier-accumulators (MACs) for matrix multiplication
e Used by Google TPU for deep learning (2017), etc

Systolic cell

t

2D Systolic Array

Y [z=wx+y

V=X
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TPU (Google)
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Bit-serial Low-precision Multiplier

Xi
t
w, W,/ W, W,
0
A B A 1] B Y B A
FA Cof FA Cof FA FA Cot FA Co}
S S s s s
Ensble” ... Control1
. Reset
Yi
Bit-serial Multiplier-Accumulator (MAC)

Figure 7: Bit-serial multiplier-accumulator (MAC).
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Why We Need Codesign?

NYU SAI LAB

N

Joint Optimization

A

v?

Algorithmic Optimization

Distillation & Low rank

[ Graph optimization ]

[ Kernel-level optimization ]

[ Distributed system, Multicore ]
[ Single Core, SoC ]

[ Circuit-level Optimization ]




Why We Need Codesign?

V?Ienshe Sparse Sparse
e' t . .
Input 19 Input Weight Input Weight
‘ g | QO
Unstructured Structured
High accuracy Low accuracy
low hardware efficiency high hardware efficiency

Hardware architecture needs to be considered when designing efficient DNN.

NYU SAI LAB
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Column Combining

Weight Matrix Systolic Array

32 64
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Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
NYU SAI LAB implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on 52

Architectural Support for Programming Languages and Operating Systems. 2019.



Column Combining

(a) Standard

(b) Systolic Array After

Systolic Array Column Combing 3

G-

7 7 3 ) Column
[ 2 Ffo[4]- Combining Y — 6 —Y

i i 1 i ——> in out
o-CrHEE -
| 1 N (T) |£;|_ﬁ"|'_;|"6"f'“-'6_ke—pt_dJe_t-o——— 1 /

i 1 i————T ______ 1. larger magnitude :___ X3

X, X, X, X, X1 Xy X3%y

e Column combining can greatly increase the utilization efficiency of the systolic array

e Recently, Nvidia A100 GPU adopts a similar idea to support the balanced structured sparsity on their GPU

NYU SAI LAB

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on 53
Architectural Support for Programming Languages and Operating Systems. 2019.



FPGA Accelerator
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Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. 2019.
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Term Quantization

8-bit uniform quantization 4-bit uniform quantization
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e Low-precision quantization leads to significant quantization error.
e Both weights and input activation are highly biased in values.
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Kung, H. T, Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized

dnns." arXiv preprint arXiv:2007.06389 (2020).
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Term Quantization
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4-bit uniform quantization
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e We can control the term-level computations by setting a group term budget.

e For a group of values, we rank and remove the small terms based on this budget.
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Kung, H. T, Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized
dnns." arXiv preprint arXiv:2007.06389 (2020).
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Term Quantization: Accelerator Design
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We propose the term MAC (tMAC) for the efficient implementation of TQ.
A tMAC processes all term-pair multiplications across a group of weight and data values.
Each term is represented by their corresponding exponent (2-3 bits).
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The term accumulation can be implemented using half adders.
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Kelle: Co-design KV Caching and eDRAM for
Efficient LLM Serving in Edge Computing

Refresh frequency decreases with
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e We propose using embedded DRAM (eDRAM) as the primary storage for LLM serving in edge device,
which offers higher storage density compared to SRAM.

e To reduce eDRAM costs and improve overall system performance, we propose Kelle, a
software-hardware co-design solution optimized for deploying LLMs on eDRAMbased edge systems.
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Kelle: Co-design KV Caching and eDRAM for
Efficient LLM Serving in Edge Computing
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Combined with our fine-grained
memory eviction, recomputation, and
refresh control algorithms, the Kelle
accelerator delivers a 3.9% speedup
and 4.5x energy savings compared to
existing baseline solutions.

59



Lecture Plan (Tentative)

Chapter 1: Basics and Efficient DNN Architectures

e Lecture 1: Review the basics of DNN
e Lecture 2: CNNs, RNNs and Variants
e Lecture 3: Transformer and its Application in AIGC

NYU SAI LAB

60



Lecture Plan (Tentative)

Chapter 2: Efficient DNN Algorithms

Lecture 4: DNN Pruning

Lecture 5: DNN Quantization

Lecture 6: Distillation, Low rank Decomposition and NAS

Lecture 7: Algorithm for Large Model Efficiency

Lecture 8: Efficient DNN Training, Distributed Training, Federated Learning
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Lecture Plan (Tentative)

Chapter 3: System and Hardware Design for Al

Lecture 9: Distributed Machine Learning System for Training and Inference
Lecture 10: Machine Learning System for Large Model

Lecture 11: Al Accelerator Introduction and CNN Accelerators

Lecture 12: Transformer & LLM Accelerators

Lecture 13: The Future of Efficient Al

o Guest Lecture: Vithursan Thangarasa (Cerebras)
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